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a b s t r a c t

Early diagnosis of Alzheimer disease (AD), while still at the stage known as mild cognitive impairment (MCI),
is important for the development of new treatments. However, brain degeneration in MCI evolves with time
and differs from patient to patient, making early diagnosis a very challenging task. Despite these difficulties,
many machine learning techniques have already been used for the diagnosis of MCI and for predicting MCI
to AD conversion, but the MCI group used in previous works is usually very heterogeneous containing
subjects at different stages. The goal of this paper is to investigate how the disease stage impacts on the
ability of machine learning methodologies to predict conversion. After identifying the converters and
estimating the time of conversion (TC) (using neuropsychological test scores), we devised 5 subgroups of
MCI converters (MCI-C) based on their temporal distance to the conversion instant (0, 6, 12, 18 and 24
months before conversion). Next, we used the FDG-PET images of these subgroups and trained classifiers to
distinguish between the MCI-C at different stages and stable non-converters (MCI-NC). Our results show that
MCI to AD conversion can be predicted as early as 24 months prior to conversion and that the discriminative
power of the machine learning methods decreases with the increasing temporal distance to the TC, as
expected. These findings were consistent for all the tested classifiers. Our results also show that this decrease
arises from a reduction in the information contained in the regions used for classification and by a decrease
in the stability of the automatic selection procedure.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder cha-
racterized by a progressive loss of faculties that leads to severe
dementia and eventually death [1,2]. No cure has been found yet
and thus, the development of therapies that can delay the adva-
nce of symptoms has attracted great attention. However, such

treatments have the greatest impact when the diagnosis is
provided at an early stage.

Before the onset of AD, individuals may experience cognitive
changes beyond what is expected for their age and education, but
that do not interfere significantly with their daily activities. This con-
dition is typically known as mild cognitive impairment (MCI). MCI
subjects, particularly the amnestic subtype, are at risk of converting to
AD, but they can also evolve into a different form of dementia, remain
stable or even regress to a normal aging process [3].

In order to improve diagnosis and to understand the evolution of
AD, a variety of biomarkers have been investigated including cere-
brospinal fluid (CSF) molecular biomarkers and neuroimaging biomar-
kers where special attention has been given to two modalities:
magnetic resonance imaging (MRI) and positron emission tomography
(PET). In an attempt to predict and understand the behavior of distinct
biomarkers across AD progression, some models have been develo-
ped, such as the one proposed by Jack et al. [4]. This model, termed
Biomarkers Cascade Model (BMC), considers that biomarker abnorm-
alities and clinical symptoms occur in a sequential way over time.
Generally, BMC states that the first stages of AD are characterized
by abnormalities in CSF biomarkers, followed by abnormalities in
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FDG-PET biomarkers as a result of the neuronal dysfunction. Later,
with the onset of neuronal degeneration, the MRI abnormalities are
recorded and finally, in the later phase of AD, the clinical symptoms
are observed. Abnormalities in the FDG-PET biomarkers are expected
to be detectable as early as 24 months before AD onset. Additionally,
distinct brain areas also display distinct behaviors across the disease
evolution [4].

Many machine learning methods have been successfully app-
lied to these types of biomarkers, with support vector machine
(SVM) being the preferred classifier mainly because of its super-
iority in terms of generalization ability when it comes to high
dimensional problems. SVMs were used, for instance, in [5,6] to
classify MR images and in [7–9] to classify FDG-PET images, and
also for multimodal classification, i.e. to combine information from
different biomarkers. For example, in [10] it was applied to MRI
and cerebrospinal fluid (CSF) biomarkers and in [11,12] to MRI, CSF
and also FDG-PET. Although SVM is the most commonly applied
classifier, others have also been successfully used: AdaBoost was
applied to PET images in [13], linear discriminant analysis was
used with MRI in [14] and random forests also with PET in [12].

The number of features initially available is extremely high, and
thus a dimensionality reduction step is usually applied to the
neuroimaging data before being used for classification. This step not
only speeds up the diagnostic system, but can also enhance its
diagnostic performance. Techniques that have been investigated for
this purpose include (but are not restricted to): principal component
analysis (PCA) [15], nonnegative matrix factorization (NMF) [9], filter
methods based on t-test [11], Pearson correlation [7] or mutual
information [7,8] and also wrapper methods such as recursive feature
elimination [10,5].

In most of the previous studies, the MCI group is very hetero-
geneous containing subjects at different stages of the disease. In
fact, few works have investigated how the disease stage influences
the ability of machine learning methodologies to perform diag-
nosis. Adaszewski et al. [16] used the amount of gray-matter
computed from MR images to assess the diagnostic accuracy of
an SVM classifier at different moments in time before conversion
into AD. This study showed a clear upward trend in the general-
ization of the diagnostic system as the MCI patients approached
the moment of conversion. Eskildsen et al. [17], on the other hand,
performed a similar analysis but using the cortical thickness
computed from anatomical MR images as features. In this case,
the brain was partitioned into several regions of interest (ROI) and
only the average thickness in each region was used for diagnosis.

In this paper, we will also investigate how the disease stage
influences the ability of machine learning methodologies to per-
form diagnosis but we will focus on FDG-PET images to distinguish
MCI subjects that will convert to AD from those that will remain
stable. The reason for using FDG-PET in this work relates to the
fact that AD like patterns are present in FDG-PET at an earlier stage
of the disease when compared with structural neuroimaging
[4,18]. By splitting the longitudinal images of the MCI converters
based on their temporal distance to the conversion event, we aim
to analyze AD progression at different stages, not only in terms of
classification performance but also in terms of the classification
patterns and of the system stability as measured by the influence
of the classification parameters on performance.

2. Material and methods

2.1. Data

Data used in the preparation of this paper were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). The ADNI was launched in 2003

by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzhei-
mer's disease (AD). Determination of sensitive and specific mar-
kers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials.

The principal investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California – San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada.
The initial goal of ADNI was to recruit 800 subjects but ADNI has
been followed by ADNI-GO and ADNI-2. To date these three protocols
have recruited over 1500 adults, ages 55–90, to participate in the
research, consisting of cognitively normal older individuals, people
with early or late MCI, and people with early AD. The follow up
duration of each group is specified in the protocols for ADNI-1, ADNI-
2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-
GO had the option to be followed in ADNI-2. For up-to-date
information, see http://www.adni-info.org.

Although data in ADNI database are labeled as CN, MCI or AD,
in this study we deal only with the MCI population. The specific
inclusion criteria for the MCI group include: memory complaints,
abnormal memory function, mini-mental state exam (MMSE)
score between 24 and 30 (inclusive), a Clinical Dementia Rating
(CDR) of 0.5 and general cognition and functional performance
sufficiently preserved such that a diagnosis of AD cannot be made
at the time of the screening visit. Then, after accepting an MCI
patient into the study, ADNI1 design called for a 36 months follow
up with image acquisition at the Baseline, Month 6, Month 12,
Month 18, Month 24 and Month 36.

Rest state FDG-PET and MR images acquired at the different visits
were downloaded from the ADNI database already preprocessed to
guarantee format, orientation and resolution uniformization.

2.1.1. ADNI preprocessing
PET. Several scans were acquired during a single visit. Subsequent

preprocessing included: (1) co-registration and (2) averaging of all
frames, (3) reorientation of the average image so that the anterior–
posterior axis of the subject became parallel to the AC-PC line,
(4) resampling using a 1.5 mm grid and (5) filtering with a scanner-
specific function to produce images with an apparent resolution
similar to the lowest resolution scanners used in ADNI [19].

MRI. MR images were (1) corrected for gradient non-linearity
distortions. Also, (2) the B1 non-uniformity procedure was applied,
when necessary, to correct non-uniformities in the image's intensity,
and (3) residual non-uniformities were mitigated using the histo-
gram peak sharpening algorithm N3 [20,21].

2.1.2. Spatial normalization
ADNI images were not aligned with each other and, thus, they

had to be warped into a common space, in order to allow for
meaningful voxel-wise comparisons between images. Note that
MR images were only used in this study to guide this image
registration process.

First, brain tissue in all MR images was segmented into white-
matter (WM) and gray-matter (GM). Tissue classification was con-
ducted with statistical parametric mapping (SPM) using a unified
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segmentation approach [22] to produce probability maps for each
tissue type. Then, for each subject, the MR images acquired at the
different visits were non-linearly registered into a subject-specific
template using the DARTEL toolbox [23]. DARTEL implements an
iterative non-linear registration algorithm that warps, in each step,
the current version of the two tissue probability maps (of GM and
WM) into the subject-specific template obtained in the previous step
(which is the average of the tissue probability maps at that point).
Finally, MR images from different subjects taken during the first visit
were non-linearly registered into an inter-subject template also using
DARTEL. The template was then mapped to the MNI-ICBM 152
nonlinear symmetric atlas (version 2009a) [24] through an affine
transformation.

Alongside with the previous MRI processing, all PET images
were co-registered with the corresponding MR images using SPM,
i.e. with the ones taken during the same visit. Rigid-body trans-
formations (6 degrees of freedom) and an objective function based
on the “sharpness” of the normalized mutual information between
the two images [25] were used to conduct these co-registrations.

After estimating all transformation parameters, the original PET
images were resampled into the MNI152 standard space with a
1.5�1.5�1.5 mm resolution using the appropriate composition of
transformations. The Yakushev normalization procedure [26] was
then used to normalize the voxel intensities of each image separately,
using the average intensity within a region not affected by the
disease. Finally, the background of the resulting images was removed
and, from the 3D volume of dimension 121�145�121 voxels, only
the ones located inside the brain were kept (557.780 in total).

2.2. Conversion criteria

Our conversion criterion was based on the time evolution of
two neuropsychological test scores: the MMSE and the CDR. MCI
participants who have undergone CDR changes from 0.5 to 1 and
maintained that CDR value were considered to have converted to
AD and the first visit in which the CDR scored 1 was established as
the time of conversion (TC). The individuals who did not match the
CDR criterion were considered to be nonconverters (MCI-NC) if
their MMSE score was, across all visits, 26 or higher. All the other
subjects were excluded. The CDR conversion criterion was already
used in some of the most relevant studies in MCI to AD conversion
[5,10,27–29]. By adding the MMSE cut-off we hope to reduce the
possibility of the MCI-NC group to contain individuals that will
convert to a dementia state and, by consequence, making the
groups more homogeneous. Moreover, subjects with CDR and
MMSE scores available for the continuation of the ADNI project,
ADNIGO and ADNI2, that suggested conversion, were also
excluded. To illustrate the previously described criteria, we pre-
sent in Fig. 1 the CDR and MMSE scores across the follow-up
period of 36 months for an MCI-C and an MCI-NC participant.

2.3. Feature selection

We constructed our model for classification based on the voxel
intensities (VI) of the postprocessed FDG-PET volumes. Since this
VI approach produces a great number of features, and the number
of examples available for training is comparatively small, this
problem suffers from the “curse of dimensionality”. To ease the
“curse of dimensionality”, a common procedure is to use a feature
selection strategy. By selecting a subset, usually much smaller than
the original set, of highly informative features, we are reducing the
dimensionality of the problem and preventing over-fitting. In
addition, since features correspond to brain voxels, feature selec-
tion also allows for the analysis of the patterns of brain metabo-
lism associated with conversion to AD.

In our study, we opted for a univariate filter approach to perform
feature selection. This type of filter ranks the features individually
according to some measure of statistical dependence with the class
label. The criterion used was the mutual information (MI), which
measures by how much knowing each feature reduces the uncer-
tainty about the label. The MI between a feature X and the class label
Y is calculated as follows:

MIðX;YÞ ¼
X

xAχ

X

yAψ
pðx; yÞ � log

pðx; yÞ
pðxÞ � pðyÞ ð1Þ

where χ and ψ represent all possible values that the feature X and the
label Y can assume, respectively. Since our features are real, they had
to be quantized using a fixed number of bins (8 bins in our
experiments) before the mass functions could be estimated using
histograms and the MI score computed.

2.4. Classifiers

Our approach to predict the conversion of MCI to AD relies on a
supervised learning framework, hence classifiers need to be defined.
Classifiers were chosen based, primarily, on the characteristics of the
analyzed data, namely their high dimensionality and low ratio of
examples to features. We have chosen support vector machines
(SVM), the most widely used classifier in this field of research and
very powerful in dealing with the problems posed by neuroimaging
data [10,11,27]. Additionally, we tested the Gaussian Naive Bayes
(GNB), a probabilistic classifier also suitable for high dimensionality
data and also used in neuroimaging studies [30]. By choosing two
classifiers with distinct approaches to the classification problem, we
aim to demonstrate the robustness of our hypothesis.

2.4.1. Support vector machines
SVMs are powerful non-probabilistic binary classifiers that build a

model by representing examples as points in a high dimensional
space, and then finding the hyperplane that separates the two classes
with the maximal margin to the nearest training examples, known as
the support vectors. New examples are then classified according to
their positions relatively to the dividing hyperplane [31].

Given a set of training patterns and their respective labels
fx1; y1g;…; fxl; ylg, where l is the number of examples in the training
set, the hyperplane weight vectorw and bias b can be determined by
solving the following equation:

minimize
w;b

1
2
wTw

subject to yiðwTϕðxiÞþbÞZ1 ð2Þ
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Fig. 1. Follow-up CDR (blue) and MMSE (green) scores for an MCI-C (solid lines)
and an MCI-NC (dashed lines). The time of conversion of the MCI-C subject is
marked in red. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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The working space given by ϕðxiÞ can be the original feature
space (ϕðxiÞ ¼ xi) where a linear boundary is found (l-SVM), or the
features can be nonlinearly mapped onto a higher-dimensional
feature space, thus nonlinear borders are obtained. This SVM
problem allows the use of the kernel trick, which consists in using
a kernel function that implicitly does a nonlinear mapping from
the original to the new space, however all calculations are
performed in the lower-dimensional input space by means of
dot products. In this study, we opted for using both the native
feature space (l-SVM) and a Gaussian RBF kernel (RBF-SVM).

In real life applications, the examples are usually not comple-
tely separable in the feature space. To take that fact into account,
the soft margin concept has been introduced into the SVM
framework. Slack variables ξi are included in the SVM cost
function as well as a parameter C that controls the amount of
data misclassification:

minimize
w;b;ξ

1
2
wTwþC

Xl

i ¼ 1

ξi

subject to yiðwTϕðxiÞþbÞZ1�ξi;
ξiZ0; i¼ 1;…; l ð3Þ
Another common problem in classification experiments is the

imbalanced number of training examples for the different classes.
This is particularly important in this classifier as there is an
induced bias of the hyperplane towards the more represented
class. To deal with this issue, the use of different penalty para-
meters (Cþ and C�) for each class is proposed in [32,33], such that
the classes with fewer examples have higher misclassification
penalty based on the degree of imbalancing:

minimize
w;b;ξ

1
2
wTwþCþ Xl

ij yðiÞ ¼ 1

ξiþC� Xl

ij yðiÞ ¼ �1

ξi

subject to yiðwTϕðxiÞþbÞZ1�ξi;
ξiZ0; i¼ 1;…; l ð4Þ
All of our experiments were performed using SVM as imple-

mented in the LibSVM Toolbox [34].

2.4.2. Gaussian Naive Bayes
The Gaussian Naive Bayes classifier is a probabilistic classifier

with strong assumptions on both the features distribution and their
independence. Let x¼ ðx1;…; xNÞ denote an FDG-PET image, where N
represents the number of features and let ωj denote the class label,
with jAf0;1g corresponding to MCI-NC and MCI-C respectively. By
using the Bayes rule and assuming that the features xi are con-
ditionally independent, GNB estimates the probability of each class
given x as follows:

Pðωj jxÞ ¼
PðωjÞ∏iPðxi jωjÞP
kPðωkÞ∏iPðxi jωkÞ

ð5Þ

The probabilities Pðxi jωjÞ are estimated from the training data
assuming a Gaussian distribution of the features. Since they are
calculated separately for each feature, this classifier becomes parti-
cularly adequate to high dimensional problems. In the end, the class
yielding the greatest conditional probability is chosen. This classifier
deals with class imbalance naturally by multiplying the likelihood by
the class prior probability PðωjÞ.

2.5. Evaluation

In this paper, we propose to explore the predictive capability of
FDG-PET images acquired at 24, 18, 12 and 6 months before
conversion and at the TC. Hence, 5 classification experiments were
performed, i.e. the MCI-NC group versus each one of the 5 MCI
subgroups of converters.

A 10-fold cross-validation procedure repeated 10 times with
fold randomization was used to access the generalization capacity
of the proposed approach for each classification experiment and
from this procedure four metrics were computed to evaluate the
system's performance, namely, the overall accuracy, sensitivity,
specificity and balanced accuracy which is given by the arithmetic
mean between specificity and sensitivity. By using different perfor-
mance metrics, it is possible to have a broader picture of the
classification performance, especially because we are dealing with
imbalanced classes.

We also analyze the patterns of selected features in terms of
how informative they are by measuring their mutual information
with the class label, and evaluate the stability of the selection
across the different folds. Our stability metric is the Kuncheva
index (KI) which is a measure of the overlap between two binary
images [35]. More concretely, the KI metric counts the number of
voxels in the intersection between a pair of binary images, but
correcting it for chance, i.e. by the expected overlap when the two
subsets are drawn randomly. Finally, the index is normalized by
the maximum possible intersection so that the index is bounded
within the range �1;1½ �.

In mathematical terms, let A and B represent a pair of binary
images with a total of Nall voxels each. Voxels in these images are
TRUE when they have been selected or FALSE otherwise. When
comparing sets with the same number of selected features (say N),
the Kuncheva index is given by

KI¼ ObservedðjA \ Bj Þ�ExpectedðjA \ Bj Þ
MaximumðjA \ Bj Þ�ExpectedðjA \ Bj Þ ¼

jA \ Bj � N2

Nall

N� N2

Nall

ð6Þ

In our case, instead of two images, we have to measure the
average overlap between 100 images as each classification experi-
ment consists of 10 runs, each of them comprising the 10 folds
used for cross validation. We do this by averaging the KI measure-
ments computed for all possible pairs of sets of selected features,
as proposed in [35].

3. Results

3.1. Data selection results

After the application of the conversion criteria to the whole
universe of MCI labeled individuals within the ADNI1 cohort, we
were left with two groups, MCI-C and MCI-NC, containing 44 and
56 subjects, respectively.

For each individual in the MCI-C group, all the available FDG-
PET images were labeled according to the temporal distance
between their acquisition time and the moment of conversion,
e.g. TC24 for data collected 24 months before TC, TC18 for images
acquired 18 months earlier than TC and so on in 6 months steps
until TC0 that corresponds to images acquired at the TC. As for the
MCI-NC group, only images acquired at the baseline were used,
hence one per subject. By selecting the image corresponding to the
visit temporally closer to the time of clinical diagnosis, we aim to
reduce the risk of including scans corresponding to subjects
undergoing any kind of conversion.

At the end of this process, we were left with six subgroups, one
for the MCI-NC group corresponding to images acquired at the
baseline visit and 5 MCI-C subgroups organized according to their
temporal distance to the estimated point of conversion from MCI to
AD: TC0, TC6, TC12, TC18 and TC24. Table 1 summarizes information
regarding the size, clinical and demographic characterization of the
MCI-NC and the MCI-C subgroups. As CDR and MMSE scores were
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not taken at the baseline visit we assume the values obtained at the
screening visit.

As can be seen in Table 1, the MMSE score increases with the
distance to the TC and is higher for the MCI nonconverters than for
any of the converters, as expected. It can also be seen that the
number of images in TC6 subset is considerably lower than in TC0
and TC12. To understand the reason why this happens, Fig. 2
shows the distribution of the TC across the follow up visits. A large
percentage of the MCI-C (41%) converted at Month 36. Since
according to the ADNI protocol, no visits occur at Month 30, the
first image prior to conversion was acquired one year earlier, at
Month 24.

It should be noted that these efforts to obtain more homo-
geneous groups by estimating the time of conversion for the
individuals in the MCI-C group are hindered by the fact that there
is some uncertainty in the diagnosis of MCI to AD conversion. In
fact, since pathological confirmation of AD can only be done post-
mortem and is not available for these subjects, there is a small
chance the some of these subjects actually did not convert to AD.

3.2. Classification results

This section describes the results obtained by the application of
the previously described classification algorithms to discriminate
between MCI-NC and MCI-C organized according to their temporal
distance to the TC using the voxel intensities of FDG-PET images as
features.

In each iteration of the cross-validation, VI features were extr-
acted and ranked according to their MI with the class label. Then,
after selecting only the most discriminative VI features, three
classifiers were tested, namely l-SVM, RBF-SVM and GNB. The
optimal classification parameters were searched using a nested-
cross-validation in the training set and the parameter combination
yielding the best balanced accuracy was selected. For the SVM
classifiers both the error tolerance parameter C and the number of
features N were estimated, while for the GNB only the N had to be
searched for. The number of features ranged from 15 to 15�215

and the parameter C between 2�18 and 20 in a geometrical
progression with common ratio r¼2.

The remaining parameters were kept fixed. The dispersion of the
RBF kernel was defined as the inverse of the number of features used
for classification, and each class-specific misclassification penalty in

Eq. (4) was defined as the penalty parameter C multiplied by a class
specific weight that depends on the degree of imbalance. Hence, Cþ

and C� in Eq. (4) are given by dþC and d�C, respectively. The dþ

weight for the dominant class was defined as the ratio between the
number of examples in the smaller and the larger classes and d� for
the less represented class was set to 1.

The results obtained will be presented in the following three
subsections. The results regarding classification performance are
presented in the first one. Afterwards, a section is dedicated to the
estimated classification parameters and the final subsection will
focus on the patterns of selected features.

3.2.1. Classification performance
Fig. 3 shows the 4 performance metrics obtained for the

previously described classification experiments, with the error
bars representing the standard deviation across the 10-fold ran-
domization process.

The results show a tendency, common to all the classifiers, of a
monotonic decrease in the accuracy, balanced accuracy and
sensitivity with the temporal distance to the identified moment
of conversion. In what concerns specificity, this metric remains
stable for all the classification experiments, with values between
70% and 85%, suggesting that the classification framework is able
to reliably model the MCI-NC metabolic activity patterns. This was
to be expected as we used only one MCI-NC dataset. On the other
hand, the deterioration of sensitivity as the time of conversion
becomes more distant clearly shows the predictability of AD
conversion across the 24 months period prior to it. The accuracy
of the prediction of whether an MCI patient will convert to AD or
not begins to decrease only 12 months before conversion, but even
at 24 months before TC, around 70% of the converters were
correctly identified as such.

Finally, notice also that these tendencies are common to the
three different classifiers which suggest that the conclusions are
not dependent on the particular classification framework in use.

3.2.2. Impact of classifier parameters on performance
The number of features N and the SVM error tolerance para-

meter C were estimated by a nested cross-validation within each
training set. By studying the results obtained for different para-
meter values, we hope to validate the choice of limits of the
chosen ranges. Additionally, it allows us to study the impact of
each one of these parameters on the diagnostic performance.

Fig. 4 shows the balanced accuracies obtained within the
nested cross-validation for each classifier as a function of the
parameter values. From this figure, it can be observed that
increasing the number of selected features improves the general-
ization of the system, especially when the patient is close to the
identified moment of conversion. However, it is important to note
that an increase in the number of features does not necessarily
means an increase in the information given to the system,
specially when dealing with neuroimaging data. Neuroimaging
data, due to its intrinsic characteristics and the spatial filtering
commonly applied in the preprocessing stage, exhibit high corre-
lation between neighboring voxels. Though redundancy is usually

Table 1
Demographic and clinical characteristics of each group (mean 7 standard deviation). The number of images is shown in parentheses.

Group NC (56) TC0 (44) TC6 (26) TC12 (41) TC18 (33) TC24 (25)

Age (avg7std) 75.178.3 77.776.4 77.777.0 76.676.6 75.976.4 73.876.8
Sex (M/F) 38/18 25/19 16/10 24/17 18/15 13/12
MMSE (avg7std) 28.671.1 23.174.1 24.372.9 25.373.5 26.173.0 26.272.6
CDR (avg7std) 0.470.2 1.070.2 0.570 0.570.1 0.570.1 0.570

Fig. 2. Distribution of the TC across the study follow-up visits.
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regarded as an avoidable property of classification systems, it plays
an important role in system stability by increasing the system
robustness to noise at the feature level.

However, when more than 12 months is left until conversion,
the accuracy of our systems’ predictions tends to decrease for very
large numbers of features. This phenomenon happens because, as
patients from the MCI-C group get closer to the moment of
conversion, the brain activity in certain brain regions decreases
and their metabolic pattern shifts from an MCI-like to an AD-like
pattern. At the beginning of this process, however, only small
regions of the brain had been affected, containing valuable
discriminative information. Thus, after selecting all voxels within
these regions, completely non-relevant features have to be
included, which damage the system's generalization ability.

As for the SVM misclassification parameter C, Fig. 4 shows that
the optimum is normally attained at intermediate values. On the
one hand, if the cost of misclassifying a subject in the training set
is too small (yellow lines), the model cannot adapt to the problem
at hand. On the other hand, if it is too high (black lines), the model
is influenced too much by outliers, which are probable in our
problem due to its inherent difficulty.

3.3. Pattern analysis

In this subsection, we will present and discuss the feature
patterns obtained during the experiments described above. The
relevance of this analysis is two-fold since evaluating the spatial
localization of the features selected for the classification process
allows not only to identify brain areas involved in MCI to AD
conversion, but also to assess how discriminative and stable is the
feature selection process and, consequently, the classification at
the various stages. We will first address the question of spatial
localization of the selected features and the analysis of how
informative they are for classification and then the stability of
the feature selection process.

Fig. 5 shows, for each dataset, the spatial profile of MI scores,
averaged across all folds, in nine different axial slices. The long-
itudinal analysis of these MI scores shows, once more, a decreasing
tendency for the most discriminative regions with the temporal

distance to the TC. In general, for all the represented slices, highest
values of MI and broader informative regions are observed for
subgroups closer to the TC. As noted before, this effect was
expected as the AD progression in the MCI-C groups increases
the differences in the metabolic patterns to the MCI-NC.

The features with higher MI are located roughly in the same areas
for all the datasets: lateral temporal cortex, predominantly on the left
side; dorsolateral parietal cortex, again with left side predominance;
and the posterior cingulate and precuneus. Although these areas
correspond to the general localization of features for all the subgroups,
there is some variability in the distribution of the number of features
inside those regions for the different subgroups. For the left temporal
cortex, the number of selected features decreased with the temporal
distance to the conversion event. A similar behavior was observed for
the right temporal cortex and left dorsolateral parietal cortex. In the
posterior cingulate cortex and precuneus, the inverse behavior was
observed, since the number of features selected in this region increased
with the distance to the TC, being the most important region in the
TC24 dataset. These findings are in accordance with the literature as
these brain areas have been described in previous neuroimaging and
physiology studies to be associated with the progression of AD in FDG-
PET. Particularly the model developed in [4] states that activity
abnormalities in the posterior cingulate cortex precede changes in
the lateral temporal cortex, which is in accordance with our study.

The second part of this analysis concerns the stability of the
feature selection process. Fig. 6 shows the Kuncheva indexes
across the tested number of features using subgroups TC0, TC6,
TC12, TC18 and TC24. First of all, notice that, regardless of which
subgroup is being used, the stability of the selection process
typically increases with the number of features, but after a certain
number has been included, it starts to deteriorate. In addition, as
the temporal distance to the TC increases, the optimal stability is
achieved using smaller numbers of features, and typically occurs
right before the moment in which the system's generalization
ability begins to decline (compare with Fig. 4). This happens
because after all relevant features have been selected (which are
more numerous when closer to the TC), the order by which the
remaining non-relevant features are chosen is almost random and
thus not stable.
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Fig. 3. Performance metrics obtained for the MCI to AD conversion classification experiments.
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Finally, it is also worth noting that the voxel selection process
tends to be more stable close to the TC (i.e. for the TC0, TC6 and
TC12 subgroups), which is consistent with the decrease in perfor-
mance reported in Section 3.2.1. In fact, as can be seen in Fig. 5,
every region is less discriminative when dealing with the TC18 and
TC24 subgroups (in comparison with TC0, TC6 and TC12), and thus
the selection process has greater difficulties in producing stable
sets of features.

4. Conclusion

In this paper we studied MCI to AD conversion with FDG-PET
images at different prodromal stages. From the available indivi-
duals labeled as MCI, we used longitudinal neuropsychological test
scores (CDR and MMSE) to classify subjects as MCI-NC and MCI-C,
and to determine the time of conversion for the MCI-C subjects.
Then, the longitudinal images of the MCI-C group were organized
according to their temporal distance to the estimated TC, and
several classifiers were tested at the different moments before
conversion, namely, TC0, TC6, TC12, TC18 and TC24.

The results show a progressive decrease in the sensitivity and
balanced accuracy with the temporal distance to the conversion
event, while the specificity remains stable. We found that this
decrease results from a reduction in the relevant information
contained in the brain areas used for classification and by a
decrease in the stability of the automatic selection of these brain
areas. We also obtained different classification patterns across
experiments that are in agreement with previous AD studies.

By partitioning the MCI-C dataset according to the temporal
distance to the conversion event, we were able to successfully
track AD progression since the TC until 24 months before AD
onset. This is, to our knowledge, the first study on MCI to AD
conversion using machine learning tools that uses longitudinal
FDG-PET images organized according to the temporal distance to
the time of conversion. In the future, we believe that the devel-
opment of models capable of integrating the longitudinal data will
contribute decisively to a better understanding of AD and to
improve diagnosis at different prodromal stages of the disease.

Conflict of interest statement

None declared.

Acknowledgments

This work was supported by Fundacão para a Ciência e a
Tecnologia through ADIAR Project (PTDC/SAU-ENB/114606/2009).

Data collection and sharing for this project was funded by the
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and DOD ADNI (Depart-
ment of Defense award number W81XWH-12-2-0012). ADNI is
funded by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering, and through generous
contributions from the following: Alzheimer's Association; Alzhei-
mer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.;
Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals,
Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd. and its
affiliated company Genentech, Inc.; GE Healthcare; Innogenetics,
N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research
& Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.;

and Takeda Pharmaceutical Company. The Canadian Institutes of
Health Research is providing funds to support ADNI clinical sites in
Canada. Private sector contributions are facilitated by the Founda-
tion for the National Institutes of Health (http:/www.fnih.org).
The grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the
Alzheimer's Disease Cooperative Study at the University of Cali-
fornia, San Diego. ADNI data are disseminated by the Laboratory
for NeuroImaging at the University of Southern California.

References

[1] L. Minati, Reviews: current concepts in Alzheimer's disease: a multidisciplin-
ary review, American journal of Alzheimer's disease and other dementias 24
(2) (2009) 95–121.

[2] W. Thies, L. Bleiler, Alzheimer's disease facts and figures, 2011 7 (2) (2011)
208–244.

[3] R. Petersen, J. Parisi, D. Dickson, K. Johnson, D. Knopman, B. Boeve, G. Jicha,
R. Ivnik, G. Smith, E. Tangalos, et al., Neuropathologic features of amnestic
mild cognitive impairment, Arch. Neurol. 63 (5).

[4] C. Jack, D. Knopman, W. Jagust, L. Shaw, P. Aisen, M. Weiner, R. Petersen,
J. Trojanowski, Hypothetical model of dynamic biomarkers of the Alzheimer's
pathological cascade, Lancet Neurol. 9 (1).

[5] Y. Fan, N. Batmanghelich, C.M. Clark, C. Davatzikos, Spatial patterns of brain
atrophy in MCI patients, identified via high-dimensional pattern classification,
predict subsequent cognitive decline, Neuroimage 39 (4) (2008) 1731–1743.

[6] Y. Cui, P.S. Sachdev, D.M. Lipnicki, J.S. Jin, S. Luo, W. Zhu, N.A. Kochan,
S. Reppermund, T. Liu, J.N. Trollor, et al., Predicting the development of mild
cognitive impairment: a new use of pattern recognition, Neuroimage 60 (2)
(2012) 894–901.

[7] E. Bicacro, M. Silveira, J.S. Marques, Alternative feature extraction methods in
3D brain image-based diagnosis of Alzheimer's disease, in: 19th IEEE Inter-
national Conference on Image Processing (ICIP), IEEE, 2012, pp. 1237–1240.

[8] P. Morgado, M. Silveira, J.S. Marques, Diagnosis of Alzheimer's disease using 3D
local binary patterns, Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 1
(1) (2013) 2–12.

[9] P. Padilla, M. Lopez, J. Gorriz, J. Ramirez, D. Salas-Gonzalez, I. Alvarez, NMF-
SVM based CAD tool applied to functional brain images for the diagnosis of
Alzheimer's disease, IEEE Trans. Med. Imaging 31 (2) (2012) 207–216.

[10] C. Davatzikos, P. Bhatt, L.M. Shaw, K.N. Batmanghelich, J.Q. Trojanowski,
Prediction of MCI to AD conversion via MRI, CSF biomarkers and pattern
classification, Neurobiol. Aging 32 (12) (2011) 2322.

[11] C. Hinrichs, V. Singh, G. Xu, S.C. Johnson, Predictive markers for AD in a multi-
modality framework: an analysis of MCI progression in the ADNI population,
Neuroimage 55 (2) (2011) 574–589.

[12] K.R. Gray, P. Aljabar, R.A. Heckemann, A. Hammers, D. Rueckert, Random
forest-based similarity measures for multi-modal classification of Alzheimer's
disease, Neuroimage 65 (0) (2013) 167–175.

[13] M. Silveira, J. Marques, Boosting Alzheimer's disease diagnosis using PET
images, in: 20th International Conference on Pattern Recognition (ICPR), 2010,
IEEE, 2010, pp. 2556–2559.

[14] L. McEvoy, C. Fennema-Notestine, J. Roddey, D. Hagler, D. Holland, D. Karow,
C. Pung, J. Brewer, A. Dale, Alzheimer disease: : quantative structural
neuroimaging for detection and prediction of clinical and structural changes
in mild cognitive impairment, Radiology 251 (1) (2009) 195–205.

[15] S. Duchesne, A. Caroli, C. Geroldi, C. Barillot, G. Frisoni, D. Collins, MRI-based
automated computer classification of probable AD versus normal controls,
IEEE Trans. Med. Imaging 27 (4) (2008) 509–520.

[16] S. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, B. Draganski, How early can
we predict Alzheimer's disease using computational anatomy? Neurobiol.
Aging 34 (12) (2013) 2815–2826.

[17] S.F. Eskildsen, P. Coupé, D. García-Lorenzo, V. Fonov, J.C. Pruessner, D.L. Collins,
Prediction of Alzheimer's disease in subjects with mild cognitive impairment
from the ADNI cohort using patterns of cortical thinning, Neuroimage 65
(2013) 511–521.

[18] R.A. Sperling, P.S. Aisen, L.A. Beckett, D.A. Bennett, S. Craft, A.M. Fagan,
T. Iwatsubo, C.R. Jack Jr, J. Kaye, T.J. Montine, et al., Toward defining the
preclinical stages of Alzheimer's disease: recommendations from the National
Institute on Aging-Alzheimer's Association workgroups on diagnostic guide-
lines for Alzheimer's disease, Alzheimer's Dement. 7 (3) (2011) 280–292.

[19] W.J. Jagust, D. Bandy, K. Chen, N.L. Foster, S.M. Landau, C.A. Mathis, J.C. Price,
E.M. Reiman, D. Skovronsky, R.A. Koeppe, The Alzheimer's disease neuroima-
ging initiative positron emission tomography core, Alzheimer's Dement. 6 (3)
(2010) 221–229.

[20] C.R. Jack, M.A. Bernstein, N.C. Fox, P. Thompson, G. Alexander, D. Harvey,
B. Borowski, P.J. Britson, J.L. Whitwell, C. Ward, A.M. Dale, J.P. Felmlee,
J.L. Gunter, D.L. Hill, R. Killiany, N. Schuff, S. Fox-Bosetti, C. Lin,
C. Studholme, C.S. DeCarli, G. Krueger, H.A. Ward, G.J. Metzger, K.T. Scott,
R. Mallozzi, D. Blezek, J. Levy, J.P. Debbins, A.S. Fleisher, M. Albert, R. Green,
G. Bartzokis, G. Glover, J. Mugler, M.W. Weiner, The Alzheimer's Disease
Neuroimaging Initiative (ADNI): MRI methods, J. Magn. Reson. Imaging: JMRI
27 (4) (2008) 685–691.

C. Cabral et al. / Computers in Biology and Medicine 58 (2015) 101–109108

http://www.fnih.org
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref560
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref560
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref560
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref456
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref456
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref5
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref5
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref5
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref6
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref6
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref6
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref6
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref8
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref8
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref8
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref9
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref9
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref9
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref10
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref10
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref10
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref11
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref11
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref11
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref12
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref12
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref12
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref14
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref14
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref14
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref14
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref15
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref15
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref15
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref16
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref16
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref16
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref17
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref17
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref17
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref17
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref18
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref18
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref18
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref18
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref18
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref19
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref19
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref19
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref19
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref20


[21] W.J. Jagust, D. Bandy, K. Chen, N.L. Foster, S.M. Landau, C.A. Mathis, J.C. Price,
E.M. Reiman, D. Skovronsky, R.A. Koeppe, The ADNI PET core, Alzheimer's &
Dement.: J. Alzheimer's Assoc. 6 (3) (2010) 221–229.

[22] J. Ashburner, K.J. Friston, Unified segmentation, Neuroimage 26 (3) (2005)
839–851.

[23] J. Ashburner, A fast diffeomorphic image registration algorithm, Neuroimage
38 (1) (2007) 95–113.

[24] V. Fonov, A. Evans, R. McKinstry, C. Almli, D. Collins, Unbiased nonlinear
average age-appropriate brain templates from birth to adulthood, Neuroimage
47, Supplement 1 (0) (2009) S102.

[25] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, G. Marchal,
Automated multi-modality image registration based on information theory,
Inf. Process. Med. Imaging 3 (1995) 263–274.

[26] I. Yakushev, A. Hammers, A. Fellgiebel, I. Schmidtmann, A. Scheurich,
H.-G. Buchholz, J. Peters, P. Bartenstein, K. Lieb, M. Schreckenberger, SPM-
based count normalization provides excellent discrimination of mild Alzhei-
mer's disease and amnestic mild cognitive impairment from healthy aging,
Neuroimage 44 (1) (2009) 43–50.

[27] C. Davatzikos, A. Genc, D. Xu, S. Resnick, Voxel-based morphometry using the
RAVENS maps: methods and validation using simulated longitudinal atrophy,
Neuroimage 14 (6) (2001) 1361–1369.

[28] Y. Fan, D. Shen, C. Davatzikos, Classification of structural images via high-
dimensional image warping, robust feature extraction, and SVM, Med. Image
Comput. Comput.-Assist. Interv.—MICCAI 2005 (2005) 1–8.

[29] C. Davatzikos, Y. Fan, X. Wu, D. Shen, S.M. Resnick, Detection of prodromal
Alzheimer's disease via pattern classification of magnetic resonance imaging,
Neurobiol. Aging 29 (4) (2008) 514–523.

[30] C. Cabral, M. Silveira, P. Figueiredo, Decoding visual brain states from fMRI
using an ensemble of classifiers, Pattern Recognit. 45 (6) (2012) 2064–2074.

[31] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin
classifiers, in: 5th Annual Workshop on Computational Learning Theory, ACM,
1992, pp. 144–152.

[32] E. Osuna, R. Freund, F. Girosi, Support Vector Machines: Training and
Applications, AI Memo 1602, Massachusetts Institute of Technology, 1997.

[33] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[34] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM

Trans. Intell. Syst. Technol. (TIST), 2 (3).
[35] L.I. Kuncheva, A stability index for feature selection, Artif. Intell. Appl. (2007)

421–427.

C. Cabral et al. / Computers in Biology and Medicine 58 (2015) 101–109 109

http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref21
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref21
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref21
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref22
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref22
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref23
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref23
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref25
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref25
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref25
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref26
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref26
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref26
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref26
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref26
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref27
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref27
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref27
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref29
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref29
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref29
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref30
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref30
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref33
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref35
http://refhub.elsevier.com/S0010-4825(15)00006-2/sbref35

	Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
	Introduction
	Material and methods
	Data
	ADNI preprocessing
	Spatial normalization

	Conversion criteria
	Feature selection
	Classifiers
	Support vector machines
	Gaussian Naive Bayes

	Evaluation

	Results
	Data selection results
	Classification results
	Classification performance
	Impact of classifier parameters on performance

	Pattern analysis

	Conclusion
	Conflict of interest statement
	Acknowledgments
	References




